von Christoph Heck
•
13. März 2025
Was sind "JET-Analysen" ? Suche nach Auffälligkeiten Zur Feststellung von auffälligen Abweichungen werden gemäß IDW PH 9.330.3, Tz. 72 in der Praxis Analysen durchgeführt, die häufig unter dem Begriff „Journal Entry Testing (JET)“ zusammengefasst werden. Diese Analysen eignen sich sowohl zur Analyse des Kontrollumfelds als auch zur Feststellung von auffälligen Buchungen aus der Abbildung von Transaktionen. Bei festgestellten Auffälligkeiten sind weitere Prüfungshandlungen (insb. Belegprüfungen) einzuleiten, um deren Ursachen anhand der zugrundeliegenden Geschäftsvorfälle zu untersuchen. Journal-Entry-Tests liegt die Vorstellung zugrunde, dass die in einem Grund- oder Zeitbuch strukturierten Buchungssätze mittels digitaler Analysen zuverlässige Signale zu Fehlern oder Unregelmäßigkeiten (=Auffälligkeiten) eines computergestützten Buchführungsverfahrens vermitteln. Typische JET-Analysen sind Schichten-, Gegenkonten-, Wochentags-, Belegverarbeitungs- oder Ziffernanalysen. Zur Veranschaulichung der Vorgehensweise einer JET-Analyse wird gerne auch die „7-W-Regel“ herangezogen. Demnach sind die folgenden sieben „W-Fragen“ zu beantworten : Warum wurde gebucht (Verursachung, Rechtsgrundlage) Was wurde gebucht (Art des Geschäftsvorfalles)? Wer hat gebucht (User)? Wann wurde gebucht (zeitgerecht/Zeitpunkt/periodengerecht)? Wie wurde gebucht (Sammel-/Einzelbuchung, automatisch/manuell)? Wohin wurde gebucht (sachlich zutreffende Konten-Zuordnung)? Welcher Betrag wurde gebucht (Betragshöhe abstimmbar?)? JET-Analysen folgen grundsätzlich den allgemeinen Grundsätzen ordnungsmäßiger Datenanalysen. Demnach sind auch bei JET-Analysen die Hauptschritte Festlegung, welche Fehlerrisiken mittels Datenanalysen identifiziert bzw. in welchen Bereichen Datenanalysen eingesetzt werden sollen (=Analyseplanung) Definition der erwarteten Analyseergebnisse i.S.v. Vergleichs- und Erwartungswerten oder von Schwellen- und Toleranzwerten (Ergebniserwartung(en)) Aufgabendefinition und Auswahl der Analysemethode (=Projektmodell) Auswahl der für die Prüfungsdurchführung geeigneten Datenanalysewerkzeuge oder einer Kombination unterschiedlicher Analysewerkzeuge (IDEA/ACL, Excel, ActiveData Python, R, KNIME, ChatGPT, usw.) Bestimmung der für die Datenanalyse erforderlichen Datenquellen und Ansprechpartner Anforderung oder Bereitstellung der für die Datenanalyse benötigten Daten (Datenselektion) Abstimmung der erhaltenen Daten auf Richtigkeit, Vollständigkeit, Abdeckung des erforderlichen Zeitraums etc. (Validierung, Sichtprüfung) Aufbereitung der Daten für die Datenanalyse (z.B. durch Harmonisierung von Datenfeldlängen oder -formaten oder Erzeugung von Berechnungsfeldern) Durchführung und Dokumentation der eigentlichen Datenanalyse (Berechnungen) Interpretation des Ergebnisses der durchgeführten Datenanalyse in Bezug auf die zu treffenden Prüfungsaussag Zusammenfassung und Berichterstattung Qualitätssicherung und Dokumentation der Prüfungsdurchführung und der Prüfungsergebnisse in den Arbeitspapieren Der (erhoffte) Nutzen von JET-Analysen Das Potential der Massendatenanalyse insbesondere auch für eine wirtschaftliche Prüfung zeigt das folgende Beispiel : Geprüft werden soll, ob Gehaltszahlungen nur an Beschäftigte mit laufendem Beschäftigungsverhältnis geleistet werden. Die Aufnahme des Geschäftsprozesses hat ergeben, dass alle Beschäftigten in einer Stammdatenliste geführt werden. Jedem Beschäftigten wird vom System bei der erstmaligen Erfassung eine eindeutige, fortlaufende Personalnummer und eine Kreditorennummer zugewiesen. Zum Zeitpunkt des Ausscheidens wird der Datensatz des Ausscheidenden vom Personalsachbearbeiter als "inaktiv" gekennzeichnet, dadurch wird automatisch die Kreditorennummer gelöscht. Die örtliche Prüfung beabsichtigt nun, u.A. durch den Abgleich aller Gehaltsüberweisungen im Prüfungszeitraum mit der Stammdatenliste zu Beginn und zum Ende des Prüfungszeitraumes Aussagesicherheit über 100 % der Grundgesamtheit zu schaffen oder im Falle von Abweichungen Ansatzpunkte für gezielte Einzelfallprüfungen zu generieren. Der Vorteil der Strategie sei, dass diese Prüfungshandlungen mit den Funktionen der Massendatenanalyse sehr schnell durchzuführen sind. Einzelfragen beim Einsatz von JET-Analysen Massendatenanalysen verfolgen nach Zeis, A. (2023, S. 226) drei Grundfunktionen: • die Prüfung eines Datenbestandes im Hinblick auf Einhaltung bestimmter Kriterien und Vorgaben, • den Nachvollzug mathematischer Operationen und • den Abgleich unterschiedlicher Datenbestände. Massendatenanalysen umfassen demnach im Einzelnen (Zeis, a.a.O, S. 230 ff.) Export und Import von Daten aus und in verschiedene Datenformate; Abgleich zweier Datenbestände bezüglich definierter Felder mit Ausgabe entweder nur der Übereinstimmungen in beiden Dateien oder der Datensätze in Datei 1 ohne Übereinstimmung in zweiter Datei bzw. der Datensätze in Datei 2 ohne Übereinstimmung in erster Datei. Dies erlaubt z.B. die Mehrfachbelegungsanalyse von Stammdatennummern oder eine Lückenanalyse; Zusammenführen von Datenbeständen, die identisch aufgebaut sind, also z. B. Zeiterfassungen eines Jahres mit denen anderer Jahre, um eine Analyse über mehrere Jahre durchführen zu können; Verknüpfen von unterschiedlich aufgebauten Datenbeständen mit Hilfe eines gemeinsamen Feldes, z. B. das Kreditorenkonto aus dem Journal mit den Informationen zum Kreditor aus der Kreditorenstammdatenliste; Extraktion von Daten, die bestimmte Kriterien aufweisen (Beträge, Daten, auch Spannen); Sortieren und Indizieren z. B. erst nach Buchungsmonat, dann nach Kreditor und schließlich nach Betrag; Gruppieren nach identischen Merkmalen und Zwischensummen bilden; Feldstatistik: welche Werte enthält das Feld, Maximum, Minimum, Mittel; Schichtung: Einteilung von Daten in Schichten und Bandbreiten mittels Ober- und Untergrenzen und Schrittgrößen; Berechnungen mittels Formeln auch aus mehreren Feldinhalten vornehmen und berechnete Felder mit Datensatzelementen vergleichen; Mit Hilfe von Pivot-Tabellen können Funktionalitäten wie Extraktion, Sortieren und Gruppieren und Berechnen kombiniert werden; das macht die Darstellung großer Datenvolumina in überschaubarer Form und komplexere Abfragen möglich (Umsätze mit einem Debitor nur im Mai und über der Schwelle von 1.000 Euro); Die Drill-Down-Funktion ermöglicht den Sprung von der Gruppe zum einzelnen Datensatz.